
San Diego Supercomputer Center
TECHNICAL REPORT

Copyright 1999, The Regents of the University of California

SDSC TR-2004-3

The Inca Test Harness
and Reporting

Framework

Shava Smallen
Catherine Olschanowsky

Kate Ericson

San Diego Supercomputer Center
University of California, San Diego

Pete Beckman
Jennifer Schopf

Argonne National Laboratory

The Inca Test Harness and Reporting Framework

Shava Smallen † Catherine Olschanowsky † Kate Ericson †

Pete Beckman ∗ Jennifer Schopf ∗

† San Diego Supercomputer Center

{ssmallen, cmills, kericson}@sdsc.edu

∗ Argonne National Laboratory

{beckman, jms}@mcs.anl.gov

Abstract

Virtual Organizations (VOs), communities
that enable coordinated resource sharing among
multiple sites, are becoming more prevalent
in the high-performance computing community.
In order to promote cross-site resource usabil-
ity, most VOs prepare a Service Level Agree-
ment that includes a minimum set of common
resource functionality, starting with a common
software stack and evolving into more compli-
cated service and interoperability agreements.
VO Service Level Agreements are often diffi-
cult to verify and maintain, however, because
the sites are dynamic and autonomous. Auto-
mated verification of service-level agreements is
critical: manual and user tests simply are not
practical on a large scale.

This paper presents the Inca test harness and
reporting framework, a generic framework for
the automated testing, verification, and moni-
toring of service-level agreements. Inca is cur-
rently being used by the TeraGrid project to
verify software installations and to monitor ser-
vice availability. This paper describes Inca’s
architecture, system impact, and preliminary
scalability experiments.

1 Introduction

Production Grids have become prevalent in the
high-performance computing community as a platform
for running large-scale compute-intensive and data-

intensive applications [1, 2, 3, 4, 5]. From an admin-
istrative perspective, the degree of coordination at the
site and resource level can vary from one Grid to an-
other. Some Grids are uncoordinated collections of
resources, while others are more tightly coordinated
through operational agreements. The latter Grids and
their management structures are known as virtual or-
ganizations (VOs).

Service Level Agreements (SLAs) [6] express a VO’s
resource sharing and operational policies. A prelim-
inary SLA is often a common software stack and can
evolve into more complicated service and interoperabil-
ity agreements. Agreement on an SLA can assist a VO
in providing more consistent and interoperable envi-
ronments to end users. Unfortunately, SLAs are often
difficult to implement because of site autonomy and
differing administrative policies.

In order to assess the degree to which SLAs are being
implemented consistently across sites, SLA verification
is required. SLA verification is accomplished by gath-
ering data from each VO resource, comparing that data
to the SLA, and measuring compliance.

In this paper, we present the Inca test harness and
reporting framework, a flexible system to perform au-
tomated verification of SLAs. Originally developed for
the TeraGrid project [1], Inca is a general framework
that can be adapted and used by almost any multisite
collaboration or Grid.

Inca provides components for executing each step
required for SLA verification and a specification for
expressing data that can be collected from resources.
Components of Inca provide mechanisms to schedule
the execution of scripts that query resources and col-
lect, archive, and publish the resulting data. We show

1

in this paper that Inca accomplishes these tasks with
low system impact.

The rest of this paper is structured as follows. The
next section outlines the motivation for creating Inca.
Section 3 describes Inca’s current design and imple-
mentation, and Section 4 describes an existing Inca
deployment. Section 5 evaluates Inca’s system impact
and scalability, Section 6 offers additional uses for the
Inca framework, and Section 7 compares Inca to re-
lated work. We conclude with a discussion of future
work.

2 Project Motivation

VOs prepare Service Level Agreements (SLAs) to
promote cross-site interoperability. The TeraGrid SLA,
for example, is designed to facilitate the development
and execution of scientific applications. According to
the TeraGrid’s SLA, participating sites are required
to deploy a common user environment, the TeraGrid
Hosting Environment, that includes a software stack
and default user environment. The TeraGrid Hosting
Environment allows users to target application devel-
opment to the common environment rather than to
each site or resource independently.

Although SLAs can greatly benefit users, because
of site autonomy and different administrative poli-
cies they are difficult to implement in practice. Sites
may interpret SLAs differently, and miscommunica-
tions may go undiscovered until users log into systems
and find inconsistencies. It is therefore important to
provide VO-level validation and verification [7] by mea-
suring compliance to the SLA through a set of prede-
fined metrics. In the case of the TeraGrid, differences
in the interpretation of the SLA clearly indicated that
a tool was needed to verify the software stack and en-
vironment.

A site’s SLA compliance cannot be guaranteed
throughout the life of a VO by one-time verification.
Since Grid resources and SLAs change over time, on-
going validation is required to measure a site’s con-
tinued SLA compliance. Amplifying this requirement
is the increased probability of failure because of the
large number of complex components involved in Grid
infrastructure and their interdependencies. Frequent
and periodic verification provides quick notification of
failures, enabling system administrators to respond im-
mediately to problems as they are detected by the ver-
ification process, rather than reacting after users dis-
cover them.

2.1 Requirements

Inca was designed and developed to be a general
framework for the automated verification of SLAs. In
this section, we present the requirements that guided
Inca’s design.

• Configurable Data Collection: The type and
frequency of data collection may vary at the Grid
or resource level. Hence, a fine granularity of con-
trol over content is required, implying that the
process of adding and removing tests be simple
and controlled on a per resource basis. Further-
more, the frequency of data collection must be
configurable on a per test basis in order to ac-
commodate the diverse nature of data collected.

• Central Configuration: Changes to the data
collected from a resource and its frequency of col-
lection are inevitable. A central location for denot-
ing these changes, as well as an automated mecha-
nism for communicating them to participating re-
sources, is needed.

• Data Access: Data needs to be accessible from a
single access point in order to increase usability. In
order to support a diverse set of data consumers,
access should be made available through standard
interfaces.

• Persistent Data Storage: Archiving collected
data provides a historical perspective on VO
health and performance and aids in detecting per-
formance problems.

• Low System Impact: Data collection infrastruc-
ture requires a component to reside on the re-
source. The resource component cannot be inva-
sive and must not impact a user’s interaction with
the system. Maintaining an average of less than
1% of the CPU will not affect users.

• Scalability: As the number of resources and
amount of data increase, low system impact should
be maintained. Expecting data querying times to
remain the same is unreasonable, but they should
scale accordingly.

3 Design and Implementation

In order to encourage modularity and low system
impact on resources, Inca is implemented by using
a client-server architecture as depicted in Figure 1.
The client components (distributed controllers and re-
porters) are lightweight and installed on every VO re-
source. The server collects data from the distributed

2

� � � � � � � � � � 	 � �

 � 	 � � � � � � � � �

� � � � � � � � � � � � �

� � � �
� �

� �

� 	 � � � �

� � � � � � � �
� 	 � � � �

� � � � � �

� � � � � � � �
 � � � � � � 	 �

� �

 ! " # $

% % %

� � � � � � 	 � &

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

� � � � � � 	 � (

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

� � � � � � 	 � &

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

Figure 1. Inca is implemented as a
client/server architecture. The R in the figure
represents reporter.

controllers and coordinates the configuration of re-
porters; it is composed of the centralized controller, de-
pot, and querying interface. Data consumers can then
access that data through the server, filter the data, and
visualize it in a meaningful way for specific user groups.

3.1 Clients

The clients (reporters and distributed controller) in-
teract directly with VO resources to gather data. In an
effort to minimize system impact, the client function-
ality has been restricted to data collection. Resulting
data is immediately forwarded to the server for pro-
cessing.

3.1.1 Reporters

A reporter interacts directly with a resource to per-
form a test, benchmark, or query. For example, a re-
porter can publish the version of a software package
or perform a unit test to evaluate software functional-
ity. Reporters do not control their execution schedule.
Scheduling is directly controlled by the distributed con-
trollers.

A reporter can be written in any language, but its
output should be formatted in XML and follow the
Inca reporter specification. The reporter specification

is designed to allow for the expression of a wide vari-
ety of data while providing enough structure to enable
generic data handling. This is achieved by separating
the results of the report into three sections: header,
footer, and body.

The format for the header and footer are uniform
across all reporters. A header provides metadata about
the reporter including the machine it ran on, the time
at which it ran, and the input arguments supplied at
run time. The footer contains an exit status indicating
success or failure; if a failure is reported, a brief error
message is required.

The variable portion of the report is a body that
expresses the information collected by the reporter. For
example, the body can be the version of a software
package or measured network throughput to a machine
such as the SRB [8] server. The schema for the body
is open; there is not a set XML schema. Restrictions
on tag formatting are enforced to enable generic data
handling by the Inca framework.

To facilitate reporter development, Inca includes an
extensible set of Perl and Python helper APIs that gen-
erate compliant XML.

3.1.2 Distributed Controllers

The distributed controllers are responsible for manag-
ing the execution of reporters and forwarding data to
the Inca server. Distributed controllers are designed to
receive execution instructions in the form of a specifi-
cation file from the Inca server. In the current imple-
mentation this process is done manually; automation
is the subject of future work. The specification file de-
scribes execution details including frequency, expected
run time, and input arguments.

The distributed controller is implemented as a Perl
daemon with built-in cron capability. When a reporter
is scheduled to run, the daemon wakes up and forks
off a process to execute it. The daemon also monitors
all forked processes and terminates them if they exceed
expected run time. Motivated by system impact results
described in Section 5, we plan to move the distributed
controller to a multithreaded model.

3.2 Server

The Inca server handles coordination of clients as
well as data collection and management. In the cur-
rent implementation, the Inca server is a centralized
component consisting of the centralized controller, de-
pot, and querying interface. In order to satisfy scal-
ability issues, server components will need to be dis-
tributed. Redesigning and implementing components

3

of the server to improve scalability are the subject of
future work.

3.2.1 Centralized Controller

The goal of the centralized controller is to manage the
dissemination of execution instructions to the clients
and to receive data from the distributed controllers and
forward this data to the depot. A partial implementa-
tion of the centralized controller that handles forward-
ing data to the depot has been completed. This cen-
tralized controller is implemented as a Perl daemon and
listens on a well-known port for incoming reports from
the distributed controllers. After processing a report,
it uses a Web services interface to forward the informa-
tion to the depot. Work continues on automating the
communication of execution instructions to clients.

3.2.2 Depot

The depot is Inca’s facility for data management. Cur-
rently, it supports caching and archiving of numerical
data. The reporter structure allows new reports and
report types to be ingested without additional config-
uration. This lowers the effort required to add new
data, including the addition of new resources and re-
porters. In the current implementation, the depot is
implemented as a Java Web service. Caching is accom-
plished by storing data in a XML document. Inser-
tion and replacement of reports are handled through a
SAX parser [9]. Archiving of numerical data is done
by RRDTool [10]. Although RRDTool is a scalable so-
lution, Inca requires a more general solution. Generic
data archiving at this scale is challenging, and the in-
vestigation of appropriate solutions is ongoing.

3.2.3 Querying Interface

A querying interface is planned to satisfy the require-
ment from Section 2.1 that data be available from a
single access point. The interface will be designed to
support both cached and archived data and will be
optimized for common queries. In addition to filter-
ing cached data to satisfy common user queries (e.g.,
by site, resource, software), the querying interface will
support the temporal nature of archived data queries.

In the current implementation of Inca, the data con-
sumer filters cached data after it receives a dump of the
entire cache directly from the depot. Archived data is
retrieved through a Web service, which wraps the in-
terface provided by RRDTool. Because of the wide
acceptance of Grid services [11, 12], we also plan to ex-
pose the functionality of the querying interface through
a Grid service.

3.3 Data Consumers

A data consumer queries the Inca server for data.
Often, data consumers display the comparison of data
stored at the Inca server to a machine-readable SLA
and apply predefined metrics to express the degree of
resource compliance. For example, a metric for mea-
suring Grid service availability on a resource can be
defined as follows: (1) at least one site can access the
resource’s Grid service, and (2) the resource can access
at least one other site’s Grid service.

Data consumers can be implemented as CGI scripts
that visualize results through Web pages, an interactive
Java GUI, or command-line scripts. The next section
describes a data consumer in use today by TeraGrid.

4 Deployment

This section describes the Inca deployment on Ter-
aGrid. At the time this paper was written, Tera-
Grid’s production participants included Argonne Na-
tional Laboratory (ANL), California Institute of Tech-
nology (Caltech), the National Center for Supercom-
puting Applications (NSCA), Pittsburgh Supercom-
puting Center (PSC), and San Diego Supercomputer
Center (SDSC). These sites collectively provided 20 TF
of compute power and 1 PB of data storage intercon-
nected through a 40 Gb/s backbone.

As described in Section 2, every site of TeraGrid
is required to provide the TeraGrid Hosting Environ-
ment, a software stack, default user environment, and
common methods for manipulating their environment
through a tool called SoftEnv [13]. The goal is to facili-
tate application development by providing a consistent
environment at all of the TeraGrid sites. In order to
verify the TeraGrid’s SLA, customization was needed
at the reporter level to collect data from TeraGrid re-
sources and at the data consumer level to visualize SLA
compliance.

Inca’s TeraGrid deployment is illustrated in Fig-
ure 2. The Inca server components, the centralized
controller and depot (within a Tomcat [14] server),
were hosted at SDSC on griddle.sdsc.edu and
grid-devel.rocksclusters.org respectively. Inca’s
client components, reporters and the distributed con-
trollers, ran on eight resources at ANL, Caltech, NCSA,
PSC, and SDSC. In order to detect user-level problems,
all client components ran under a default user account
called inca.

In order to query the resources for compliance to the
TeraGrid Hosting Environment, reporters were writ-
ten to collect versions of installed packages and test
package functionality. A reporter was also written to

4

� � � �

� � � � � �

� � 	

 � � � �
� � � � � � � � � � � � � �

 � � � �
� � � � � � � � � �

� � � � �
 �

 � � � �
� � � � � � � � � �

� � � �

 � � � �
� � � � � � � � � �

� � � � �
� � � � � � � � � � � �

 � � � � �

 � � � � � � � �

� � � � � � � � �

 � � � �
� � � � � � � � � �

 � � � �
� � � � � � � � � �

 � � � �
� � � � � � � �

 � � � �
� � �
 � � � �

Figure 2. Inca deployment to TeraGrid.

collect the set of environment variables in the default
user environment and a resource’s SoftEnv database. A
summary of the distributed controller’s configuration,
illustrating the number of reporters executed on each
resource and their frequency of execution, is provided
in Table 1. In order to distribute reporter execution,
each reporter was scheduled to run at a random time
during its cycle. For example, one hourly reporter was
randomly chosen to run at the 20th minute of each
hour, while another was randomly chosen to run on
the 31st minute of each hour. In the future, we plan
to implement integrated reporters to test interpackage
functionality, eventually wrapping representative ap-
plications. We also plan benchmark reporters to detect
performance problems.

In order to visualize resource compliance to the Ter-
aGrid Hosting Environment, a machine-readable ver-
sion of the SLA was formatted in XML. CGI scripts
were written to compare the data collected from the re-
sources to the SLA and display the results in red/green
status pages. For example, Figure 3 shows the software
stack status page, detailing the specific list of packages
in the software stack: green indicates an acceptable
version of a software package is located on a resource
and the unit tests pass; red indicates otherwise. Simi-
lar status pages are shown to display the default user
environment and SoftEnv status. In this setup, over
900 pieces of data are being compared and verified.

Figure 3. The TeraGrid hosting environment
status monitor.

5 Scalability and Impact Analysis

Inca’s success greatly depends on its scalability.
For example, reporters must be small and require
low system utilization in order for a large number of
them to run simultaneously. The centralized and dis-
tributed controllers have similar system utilization re-
quirements. Scalability for the depot implies low re-
sponse time. In this section we detail our experiments
that examine Inca client overhead and depot scalabil-
ity.

5.1 System Impact

One of Inca’s requirements (described in Section 2.1)
is for its client components to have low system impact
on its monitored resources. In this section, we study
the client’s system impact within the context of the
Inca TeraGrid deployment described in the preceding
section. We also analyze Inca’s server components.

5.1.1 Experimental Setup

To study the impact of Inca’s client and server compo-
nents, we monitored its deployment on TeraGrid dur-
ing the week of March 8–15, 2004, logging the CPU
and memory usage for the central controller, depot,
and a single distributed controller at Caltech every 10
seconds using the Unix system command top. System
impact results are summarized in Table 2, and the ma-
chines on which they ran are described in Table 3 ∗.

∗The number of measurements used to calculate the system

usage of the client components may not be precisely a week’s

worth of data. Our logs showed evidence of clock skew on the

5

Reporter Frequency
Machine 1 hour 4 hours 12 hours total
tg-login2.uc.teragrid.org 5 105 50 160
tg-viz-login1.uc.teragrid.org 5 112 50 167
tg-login1.caltech.teragrid.org 5 105 50 160
tg-login1.ncsa.teragrid.org 5 105 50 160
rachel.psc.edu 4 63 36 103
lemieux.psc.edu 4 63 36 103
ds002.sdsc.edu 4 63 36 103
tg-login1.sdsc.teragrid.org 5 105 50 160
Total 37 721 358 1116

Table 1. The current number of Inca reporters on TeraGrid sys tems by frequency of execution.

Inca Components
distributed centralized
controller reporters controller depot

Usage (tg-login1) (tg-login1) (griddle) (grid-devel)

% CPU
mean 0.02 1.59 0.35 9.22
std 0.62 10.68 1.31 23.60
min 0.00 0.00 0.00 0.00
max 99.90 200.00 35.90 201.50
median 0.00 0.00 0.00 0.00
Memory (MB)
mean 38.86 37.23 13.67 144.01
std 38.57 40.71 0.58 6.69
min 6.05 0.00 13.00 132.00
max 852.53 628.82 15.00 158.00
median 18.14 18.14 14.00 148.00

Table 2. TeraGrid CPU and memory use by Inca’s controllers, r eporters, and depot during the week
of March 8-15, 2004.

5.1.2 Results

Recall from Section 3.1.2 that the distributed controller
maintains and runs a schedule for reporter execution
on a resource, forking a process to run a single re-
porter. Table 1 shows that Caltech’s distributed con-
troller executed 5 reporters every hour, 105 reporters
every 4 hours, and 50 reporters every 12 hours. As
shown in Table 2, the distributed controller’s CPU us-
age was low, averaging 0.02%, fulfilling our low system
impact requirement described in Section 2.1. Mem-
ory usage averaged 39 MB (0.64% of physical mem-
ory). Reporters executed by the distributed controller
were more resource-intensive, consuming an average of

order of 2–5 minutes, but we were unable to access the machine’s

logs to accurately adjust the client log timestamps. These results

will be re-executed in the final version of the paper.

1.59% of the CPU and 38 MB (0.62% of physical mem-
ory). When heavyweight reporters were executed, CPU
utilization was high.

Recall that the system impact of reporters is config-
urable by varying the frequency of execution. In cases
where heavyweight reporters are executed, it is impor-
tant to execute them less frequently to amortize their
impact on the system. One area of future work is to
provide a tool that will estimate the system impact of
a reporter execution schedule on a resource, so that the
system administrator can trade-off freshness of data for
system impact.

To better illustrate the load on the centralized com-
ponents of Inca, we logged a report’s size and the time
it was received by the centralized controller. During
the week, the centralized controller received 25,002 re-

6

Num. CPU Speed Memory
Hostname CPUs Processor Type (MHz) (GB)

griddle.sdsc.edu 1 Intel Pentium 4 1816 0.5
tg-login1.caltech.teragrid.org 2 Intel Itanium 2 1296 6.0
grid-devel.rocksclusters.org 4 Intel XEON 2193 1.0
remington.rocksclusters.org 2 Pentium III (Coppermine) 731 0.5
compute-0-0 1 Pentium III (Coppermine) 731 0.5

Table 3. This table details characteristics of the system no des used in our scalability and impact
experiments. Impact tests were conducted on griddle, a single node system hosting a centralized
controller and depot, and Caltech’s login node, tg-login1, with a distributed controller. The scalability
experiments were performed on a single node with another Inc a depot, grid-devel, and two remington

nodes, one with a centralized controller and the other with a distributed controller.

0 10 20 30 40 50 60 70 80 90 100
0

2501

5002

7503

10,004

12,505

15,006

17,507

20,008

22,509

25,010
Report sizes received by the centralized controller

KB

N
um

be
r

of
 r

ep
or

ts

Figure 4. Histogram showing the report sizes
received by the centralized controller in the
TeraGrid deployment. Results show that
94.2% of the reports were less than 5 KB.

ports from all of the distributed controllers, at a mean
rate of 2.48 reports per minute. As shown in Figure 4,
94.2% of the reports received were small, less than 5
KB. The amount of data received was 75 MB, at a
mean rate of 7.66 KB/min. Recall from Section 3.2.1
that the centralized controller is responsible for col-
lecting reports from the distributed controller and for-
warding them to the depot. As shown in Table 2, the
centralized controller is a lightweight process that used
an average of 0.35% CPU and an average of 14 MB
(2.59% of physical memory). In contrast, the depot is a
more heavyweight process. The depot used an average
of 9.22% of the CPU (standard deviation of 23.60%)
and 144 MB (14% of physical memory). The depot re-

quires more CPU and memory because it is currently
implemented as a Java Web service, performs a large
amount of XML processing, and has the overhead as-
sociated with running inside a Tomcat container.

5.2 Depot Scalability

To be considered scalable, the depot must be able to
process both updates and queries in a timely manner.
Update time depends on three factors: cache size, re-
port size, and the location of the data in the cache. We
designed experiments to investigate the effects of cache
size and reporter size on depot scalability. The depot
was tested using Inca’s actual TeraGrid load, as well
as a synthetic load used to explore the effects of cache
sizes greater than those in the existing deployment.

5.2.1 TeraGrid Results

Figure 5 shows the update times for the TeraGrid de-
ployment. Reporter size ranged from 753 bytes to 61
KB as illustrated in Figure 4, and the cache size re-
mained steady around 1.5 MB. The minimum update
time varied with reporter size. The large variation in
update time is due to the report location in the cache.
The final version of the paper will include additional
graphs illustrating this phenomenon. The appropri-
ate location for placing the report is found by process-
ing the cache from the beginning until that location is
found. This causes the update time to be largely de-
pendent on that location, rather than on report size or
cache size.

5.2.2 Synthetic Results

To evaluate how well the depot handles cache sizes
larger than the TeraGrid’s, we ran a synthetic workload

7

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Report Size (Kb)

T
im

e
(s

ec
on

ds
)

Update Times (Teragrid Deployment)

Figure 5. Update times for the TeraGrid de-
ployment of Inca.

on a separate deployment. The deployment was similar
to the TeraGrid’s; the main difference was that only a
single client running. Because all update requests were
serialized through the centralized controller, multiple
clients were emulated by a single client running at a
higher frequency; this approach made it easier to con-
trol the frequency of updates.

All of the resources were similar to those used by
the TeraGrid. The centralized controller was run on
one node of remington.rocksclusters.org, the dis-
tributed controller was run on the compute0-0 node of
the same cluster, and the depot was run on a faster
machine (grid-devel.rocksclusters.org). Specifi-
cations for remington and grid-devel nodes are out-
lined in Table 3.

The synthetic workload was created by using a sim-
ple reporter that read one of four premade reports and
printed its contents to standard out. The four syn-
thetic report sizes were 851, 9257, 23168, and 45527
bytes. These file sizes are a sample of actual TeraGrid
reporter sizes. A specification file controlled how often
the reporter was run and which file it printed. This
made it possible to control the size of the cache.

To examine the effects of both report size and cache
size on update times, we varied the specification file to
hold the cache size steady at 0.9 MB, 1.8 MB, and 2.7
MB. Each specification was run for a minimum of two
hours. For the final paper, these experiments will run
for longer time periods.

Results for the synthetic tests were nearly identical
to the TeraGrid test results. Update times also showed

a dependence on the size of the report. Variations of
total cache size did not have a significant effect on up-
date times. The location of the report within the cache
again caused large variations in the update times for
same-size reporters.

Update times for both deployments were longer than
expected. To determine which part of the update took
the most time, we added extra timings to the depot
code to evaluate the processing overhead (the time used
for XML processing and file I/O). We found that as re-
port size increased, processing time was dominated by
the DOM [15] parser as it verified reports before adding
them to the cache. The parsing of the cache docu-
ment, which is much larger than the incoming report,
took only a fraction of the time used for verification.
The verification process can be changed to use a SAX
parser, which will greatly reduce the processing time.

In order for the depot to scale to larger amounts of
data, it is necessary to remove the dependency between
cache location and update time and to minimize the re-
lationship between report size and update time. One
way to achieve these goals is to process updates asyn-
chronously. This will also allow us to batch updates
and reduce depot overhead.

6 Additional Usage Scenarios

Although the TeraGrid project uses Inca primar-
ily for software and service verification, it is a general
framework capable of supporting a variety of usage sce-
narios. Because Inca’s client/server implementation is
modular, it can be used to collect different types of
data and flexibly schedule data collection. Inca can be
employed to gather a wide variety of system data, from
software and services data to benchmarks and perfor-
mance data. For example, Inca can periodically sched-
ule the execution of benchmarks, and its performance
data can be archived and published. Inca is capable of
executing cluster-level benchmarks, Grid-level bench-
marks such as GRASP [16], or network benchmarks.

Inca’s framework can also be adapted to collect data
according to different scheduling mechanisms. Specifi-
cally, we anticipate that self-scheduling data collection
mechanisms could communicate directly with the Inca
server. For example, event-driven (e.g., triggered on
machine reboot) data collection may be more appro-
priate for some types of data.

Inca has driven the development of a large set of
valuable unit tests. These tests have a variety of appli-
cations.

• After upgrades and additions to the software
stack, the unit test suite can be used to perform
regression testing.

8

• A comprehensive unit test suite provides new re-
sources with a well-defined specification and a
mechanism for measuring their SLA compliance
as they move toward production.

• Through an appropriate user interface, users and
support personnel can employ the unit test suites
as a debugging tool. A prototype interface has
been completed, but it is not yet publicly available.

7 Related Work

Inca is unique in that it uses the data it gathers to
measure whether an SLA is being satisfied. The follow-
ing systems overlap with Inca’s goal or infrastructure.

One use of Inca is to test Grid service availability.
Both the NCSA TestGrid Project [17] and GITS [18]
share this goal. Implemented as script, they run a pre-
defined set of tests (code within the script) and display
the results on a Web page. The set of tests run within
these scripts are valuable. However, a system such as
Inca is better suited to handle changes in the SLA, de-
velopment of multiple interfaces to collected data, and
the addition of new resources.

A part of Inca’s architecture, the server, can be
considered an information service. This functional-
ity overlaps with the Monitoring and Directory Ser-
vice (MDS2) [19]. MDS2 collects information about
Grid resource characteristics and availability for sys-
tem administrators and users. MDS2 is currently im-
plemented by using a pull model when the data is re-
quested. In contrast, Inca requires a push model in
order to ensure that reporters are run on a regular in-
terval. This is important both for detecting errors and
for maintaining a coherent archive.

MonALISA [20] provides Grid-level monitoring by
aggregating data from system usage and cluster mon-
itoring systems. MonALISA is useful for gathering
resource usage statistics at the Grid-level from self-
scheduling providers. However, it does not have the
capability to schedule data collection, one of Inca’s key
requirements.

At a high level it may seem that there is overlap be-
tween cluster monitoring systems [21, 22, 23] and Inca
because they both collect information from resources.
For example, Ganglia [21] provides comprehensive, low-
level monitoring information on all nodes in a cluster.
But Inca’s goal is not to gather this granularity of data.
From the viewpoint of the goals and intended use, Inca
and cluster monitoring systems operate at different lev-
els and are in fact complementary.

8 Future Work

Through the use of Inca in the TeraGrid project, we
have identified areas in need of further development
and improvement. These areas include additional user
interfaces, ordered execution of reporters, automated
configuration, and improved data archival methods.
Each of these is discussed further below.

Most of this paper has focused on the detection of
system-level problems. Another use of the reporters de-
veloped for the TeraGrid is to troubleshoot user-level
problems (e.g., to detect account setup problems). A
Web-based prototype interface for enabling users to ex-
ecute reporters under their own account has been com-
pleted, and further work will be done to make this pub-
licly available. Reporters also serve as example code
and be a learning resource for users.

Grid middleware packages often have several soft-
ware dependencies. When when one service goes down,
the functionality of other software may also be affected.
One way to better detect the source of system failures
is to enable ordered scheduling of reporters, such that
the execution of one reporter could depend on the suc-
cessful completion of another. Particularly, if a core
Grid service fails, executing reporters which test soft-
ware that has a dependency on the core Grid service
is redundant. Handling reporter dependencies would
enable more efficient scheduling and improved GUI in-
terfaces to visualize the failures.

As a VO expands to include more resources, there
needs to be a central location to trigger configuration
changes when the SLA is changed. Automating exe-
cution instructions to be disseminated as described in
Section 3.2.1 will make the management of an Inca in-
stallation more scalable.

The current solution for archiving data is targeted
to numerical data. While this solution stores useful
historical information, logging of error messages and
other textual information would also be useful. En-
abling richer archiving capabilities in a scalable fashion
and providing flexible querying interfaces are challeng-
ing tasks, and we will continue work in this area.

9 Conclusion

The verification of VO Service Level Agreements
promotes consistency and stability across Grid re-
sources. The Inca test harness presented in this pa-
per is a flexible framework for performing SLA verifi-
cation. Because of its modular design, Inca has a low
impact on resources and offers customizable data col-
lection scheduling and representation. In order to en-
courage site interoperability, Inca has been successfully

9

deployed to TeraGrid to verify its common software
environment SLA, and over 900 pieces of information
have already been verified. We are now pursuing col-
laborations with other Grids in addition to our work
with the TeraGrid project.

Acknowledgements

This work was supported by the Distributed Teras-
cale Facility project and in part by the Mathemati-
cal, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of
Energy, under contract W-31-109-Eng-38.

References

[1] The TeraGrid Project web page. http://www.

teragrid.org.

[2] M. Ellisman and S. Peltier. Medical Data Feder-
ation: The Biomedical Informatics Research Net-
work. In I. Foster and C. Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastruc-
ture . Morgan Kaufmann, second edition, 2004.

[3] A.K. Sinha, B. Ludaescher, B. Brodaric, C. Baru,
D. Seber, A. Snoke, and C. Barnes. GEON:
Developing the Cyberinfrastructure for the Earth
Sciences - A Workshop Report on Intrusive
Igneous Rocks, Wilson Cycle and Concept
Spaces . http://www.geongrid.org/workshops/
conceptspace/igneous_rocks/workshop_r%

eport_intrusive_igneous_rocks.pdf, 2004.

[4] C. Kesselman, T. Prudhomme, and I. Foster. Dis-
tributed Telepresence: The NEESgrid Earthquake
Engineering Collaboratory . In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for
a New Computing Infrastructure . Morgan Kauf-
mann, second edition, 2004.

[5] International Virtual Data Grid Laboratory web
page. http://www.ivdgl.org.

[6] K. Czajkowski, I. Foster, C. Kesselman.,
V. Sander, and S. Tuecke. SNAP: A Protocol
for Negotiating Service Level Agreements and Co-
ordinating Resource Management in Distributed
Systems . In Revised Papers from the 8th Inter-
national Workshop on Job Scheduling Strategies
for Parallel Processing, pages 153–183. Springer-
Verlag, 2002.

[7] The Software Productivity Consortium’s Verifi-
cation and Validation Website . http://www.

software.org/pub/v&v/.

[8] M. Wan, A. Rajasekar, R. Moore, and P. Andrews.
A Simple Mass Storage System for the SRB Data
Grid . In Proceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Sys-
tems & Technologies, 2003.

[9] D. Brownell. SAX2 . O’Reilly & Associates, Inc.,
2002.

[10] The Round Robin Database Tool web page. http:
//www.rrdtool.com.

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Inte-
gration . Open grid service infrastructure wg,
Global Grid Forum, 2002.

[12] The WS-Resource Framework. White Paper,
March 2004.

[13] MCS Systems Administration Toolkit web
page. http://www-unix.mcs.anl.gov/systems/
software/msys.

[14] Apache Tomcat web page. http://jakarta.

apache.org/tomcat.

[15] Arnaud Le Hors, Philippe Le Hégaret, Lauren
Wood, Gavin Nicol, Jonathan Robie, Mike Cham-
pion, and Steve Byrne. Document Object Model
(DOM) Level 2 Core Specification. W3c recom-
mendation, W3C, 2000.

[16] G. Chun, H. Dail, H. Casanova, and A. Snavely.
Benchmark probes for grid assessment. Technical
Report CS2003-0760, University of California at
San Diego, July 2003.

[17] NCSA TestGrid Project.

[18] The UK Grid Integration Test Script - GITS.
http://www.soton.ac.uk/~djb1/gits.html.

[19] X. Zhang, J. Freschl, and J. Schopf. A Perfor-
mance Study of Monitoring and Information Ser-
vices for Distributed Systems . In Proceedings of
HPDC-12, 2003.

[20] H.B. Newman, I.C. Legrand, P.Galvez, R. Voicu,
and C. Cirstoiu. MonALISA: A Distributed Mon-
itoring Service Architecture . In Proceedings of
the Conference on Computing and High Energy
Physics (CHEP), 2003.

10

[21] M. Massie, B. Chun, and D. Culler. The Gan-
glia Distributed Monitoring System: Design, Im-
plementation, and Experience . Parallel Comput-
ing, April 2004.

[22] Clumon Cluster Monitoring web page . http://

clumon.ncsa.uiuc.edu.

[23] Big Brother. http://www.bb4.com/.

11

